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Abstract
Despite the availability of numerous open datasets on cultural heritage, limited research has focussed on struc-
turing and normalising this type of data, particularly through the extraction of entities from unstructured texts.
This step is crucial for enriching, analysing, and understanding these complex datasets. This study presents a
procedure designed to streamline the creation of domain-specific datasets for training natural language processing
models and evaluates their performance across three distinct datasets generated using this procedure. A zero-shot
learning model, the Generalist and Lightweight Model for Named Entity Recognition, was assessed alongside
pre-trained spaCy models on three datasets created in the framework of the European Union-funded Research
Intelligence Technology for Heritage and Market Security project: one containing provenance information on
artefacts from North American museums, another detailing stolen cultural goods in Romania, and a third with
structured yet unclassified data on WWII-looted Polish art. Further training of spaCy models on these newly
defined datasets revealed that fine-tuned models significantly outperform their non-fine-tuned counterparts, with
the best results from the Transformer model fine-tuned on provenance data. This success can be largely attributed
to the standardised conventions in provenance research. In contrast, the model fine-tuned on descriptive infor-
mation performed poorly, likely due to extensive descriptions containing non-essential data that increased model
uncertainty. This work highlights the potential of automating entity extraction to build knowledge graphs for
cultural object databases, enabling advanced analytical approaches such as Network Analysis.

Keywords Natural language processing � Information retrieval � Unstructured data processing

1 Introduction

Unstructured data refers to information that does not have a pre-defined format or organisational model. Unlike
structured data, which can be easily organised into standardised keys and values, unstructured data encompasses a
wide variety of formats such as text, images, audio, video, and social media posts. This type of data lacks a
consistent schema, making it more challenging to clean and analyse, especially when dealing with large volumes
that require automated processing. Despite these challenges, unstructured data are a rich source of valuable
insights, requiring advanced tools and technologies to manage its complexity and extract meaningful information
for data analysis and knowledge enhancement [1].
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The European Union (EU)-funded project Research Intelligence and Technology for Heritage and Market
Security (RITHMS),1 developed by a consortium of researchers, data analysts, Law Enforcement Agencies
(LEAs), and scientific institutions across Europe, aims to build a digital platform to assist LEAs in combating
cultural goods trafficking. This platform will facilitate the identification and analysis of relationships between
criminal and non-criminal actors involved in the circulation and transfer of ownership of cultural property. At its
core, the platform utilises Social Network Analysis (SNA), which applies graph theory to unravel social systems,
their properties, and underlying mechanisms. The network structure, represented as a mathematical adjacency
matrix, is particularly effective in handling large volumes of entities and their relationships by organising them as
nodes and connected edges [2].

To achieve its goals, the RITHMS project leverages a comprehensive Knowledge Graph (KG) database. A KG
is a large-scale graph that consolidates data from diverse sources, aimed at organising and conveying knowledge
about the real world. In the graph, nodes represent entities such as individuals, organisations, dates, and locations,
while edges denote relationships among them. The data are structured using graph-based models, often incor-
porating ontologies or rules to represent quantified statements. This approach allows for the organisation of
specific knowledge domains and the accumulation of new knowledge through inductive or deductive reasoning
[3].

Conventional SNA typically focuses on a single type of entity (e.g. ‘person’) and a single type of relationship
(e.g. ‘friendship’). However, real-world systems often involve entities of the same type connected by diverse
types of relationships, as well as relationships connecting diverse types of entities (e.g. organisations, locations,
and dates) [4]. To address this complexity, multiple perspectives can be modelled through multiplex, hetero-
geneous, or multiplex heterogeneous networks [5], which offer a more effective approach for analysing intricate
systems.

In the context of the cultural property trade, a multiplex heterogeneous network structure consists of several
interconnected layers, each sharing the same set of nodes but linked by different relationships. Entities within this
network may include individuals (e.g. collectors, intermediaries, looters, and restorers), organisations (e.g.
auction houses, museums, and companies), dates, locations, events, and cultural goods themselves. Relationships
among and within these layers can encompass ownership, transactions, money transfers, restoration processes,
partnerships, friendships, legal disputes, loans, exhibitions, historical connections, and more.

Currently, no comprehensive database captures all these nuances. To address this gap, the RITHMS project has
developed a set of automated modules to gather and structure data for this complex, interdisciplinary network.
These modules draw data from a variety of sources, including existing open-source datasets, news articles, mobile
traffic data, satellite imagery analysis reports (in connection with the EU’s Copernicus Earth Observation pro-
gram), databases of stolen objects, online forums, and websites of galleries and auction houses. While some of the
collected data are already well-structured or semi-structured and can be easily normalised through simple rule-
based methods, other raw, unstructured data require more sophisticated information extraction processes to be
transformed into structured, semantically and numerically representable data.

Natural Language Processing (NLP) tools play a key role in this transformation. For instance, Named Entity
Recognition (NER) identifies and categorises the semantic types of entities in text (e.g. person, organisation,
location, etc.), while Relation Extraction (RE) infers relationships among them. By leveraging these tools,
knowledge extracted from unstructured data can be converted into semantic triples—three-part statements that
follow the structure ‘subject’, ‘predicate’, ‘object’—for example, ‘Person A’ ‘is related to’ ‘Person B’ [6]. In
graph theory, these triples represent adjacent nodes and their incident edges [7], allowing the effective capture and
representation of semantic information.

Early NLP systems relied heavily on manually defined domain-specific features to achieve satisfactory per-
formance. However, with the advent of Deep Learning models and the availability of vast, labelled corpora of
texts across the web, the performance and precision of these tools have improved significantly, especially for

1 https://rithms.eu/.
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English-language content [8, 9]. Despite these advancements, when applied to information that differs signifi-
cantly from the original training dataset in terms of domain, language, and/or morphological structure, the
available tools often underperform and require costly and time-consuming domain adaptation [10]. Additionally,
challenges such as ambiguity and implicitness of relevant information, especially in event extraction, further
complicate the application of NLP models in specialised fields [11].

The present study aims to: a) propose a faster and more efficient workflow for adapting or training NLP models
without the need for extensive manual annotation, leveraging existing models like Meta’s LLAMA and
Explosion’s spaCy; b) generate high-quality labelling in the absence of domain-specific training data; c) evaluate
the performance of the models on the new datasets; and d) evaluate and compare the quality of the entities
extracted in the context of cultural heritage cataloguing and provenance research. The fine-tuned models have
been made available on GitHub at the link https://github.com/IIT-CCHT/NER-models-CH-datasets.

2 Materials and methods

2.1 Data collection

The data utilised in the present study were collected from databases of missing, stolen, protected, and
unprovenanced cultural goods. Custom-built web scrapers were developed to extract and pre-process information
from thirty repositories for ingestion in the RITHMS platform. These repositories included fourteen national and
international databases focussing on problematic (e.g. unprovenanced, stolen, missing) or protected objects,
fourteen repositories dedicated solely to WWII-looted cultural goods, and two databases containing information
on provenance and individuals. Target sources were chosen due to their reliability, scope, and accessibility. While
the project focuses primarily on European databases, it also incorporates sources from North and South America
due to their relevance in tracking objects at heightened risk of trafficking or illicit import into European markets.
Notable examples include the database managed by the Association of Art Museum Directors (AAMD), the
Stolen Cultural Assets database managed by Chile’s National Cultural Heritage Service, and the Iraq Museum
Database developed by the University of Chicago’s Oriental Institute.

From the initial thirty data sources, over two million entities—including individuals, objects, dates, locations,
and organisations—were gathered and identified. This extensive data collection resulted in an unprecedented,
consolidated dataset of stolen, protected, and unprovenanced objects, preliminary analyses on which have yielded
promising results [12, 13].

While some properties within each entity were already structured or required minimal deterministic effort to
extract, others consisted of unstructured or quasi-structured texts containing rich semantic information.
Depending on the source, data needing further processing were broadly subdivided into three categories:
provenance information, descriptive details, and unclassified mixed information.

Provenance information concerns texts that relate an object’s ownership history, typically following a format
like: ‘Person Name purchased from Organisation, City, Date; then to Second Person, City, Date; acquired by
Museum, Location, through donation on Date.’ The second category—descriptive details—concerns free text that
contains details of the artefact, for example: ‘oil painting on canvas, framed, in good condition, depicting a
landscape with artist’s signature in bottom-left corner’. The final category, of ‘unclassified mixed information’,
concerns relatively short samples like ‘ABC Museum,’ ‘European art market,’ and ‘John Smith,’ which must be
classified as organisation, location, and person, respectively. Each of these three categories is outlined in greater
detail in the following section.
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2.2 Datasets

This paper examines three distinct datasets (cf., Table 1): the AAMD Object Registry, the Obiecte Furate
database of the Romanian Police, and the Polish Ministry of Culture’s Catalogue of Wartime Losses. They
encompass the three types of data requiring additional processing: provenance information, detailed object
description, and misclassified or unclassified values, respectively.

At the time of writing, the AAMD Object Registry stores records on over 2300 art objects acquired by AAMD
member museums since 2008. These objects lack pre-1970 provenance, referring to documentation of their
presence on the international market before the adoption date of the UNESCO Convention aimed at preventing
cultural goods trafficking. The original database includes various fields: the current museum, accession number,
title, artist or producer, size, creation date, credit line (indicating the previous owner and the channel through
which the museum acquired the object, such as by gift or purchase), country and culture of origin, object type,
material or technique, provenance, exhibition and publication history, and—specifically for Nazi-era objects—
details on the resolution of restitution claims. Each record also provides a direct link to the institution currently
holding the object and a reference to the specific AAMD guideline permitting its acquisition despite insufficient
provenance.

In this dataset, the unstructured text within the ‘provenance’ field requires processing via NLP models to
extract the entities and relationships associated with the artefact’s ownership history. This field provides critical
information for the RITHMS project, enabling the identification of individuals and organisations connected to
specific artefacts. Provenance information typically follows a chronological structure, detailing events from the
earliest to the most recent, separated by semicolons or periods. This format reflects the practices of data providers
(such as museums and galleries), who adhere to established conventions in provenance research. Although
explicit verbs may be absent in the sentences, the implied action (typically acquisition or transfer of ownership) is
clear. The data are classified as ‘quasi-structured’ as they adhere to a consistent format but contain free-text
elements that require specialised extraction and classification of distinct entities.

The second data source is the Obiecte Furate database (ROF), managed by the Romanian Police. At the time of
writing, the database holds records on approximately 900 stolen cultural objects based on police reports filed by
individuals and institutions. The fields retrieved from each record are object category (e.g. ‘Pictures,’ ‘Decorative
Art,’ ‘Book’), title, reference number assigned by the Romanian Police, date of theft, date of registration in the
database, and description.

The ‘description’ field, which is the focal point of this study, contains valuable details such as the artist, year of
creation, place of publication (for books), material, size, weight, and previous location. During the data collection
phase, deterministic pre-processing methods were applied to this unstructured description to extract and organise
relevant details. However, these methods were limited by pre-defined rules, resulting in the loss of meaningful

Table 1 Datasets
specifications

Dataset (language) Field to process # Of samples # Of unique values Type

AAMD object Provenance 2336 1268 Quasi-

registry (English) Structured

Obiecte furate Description 890 866 Unstructured

(Romanian)

Catalogue of Author/workshop/ 4214 1026 Quasi-

wartime losses School Structured

(English/Polish)

The content of the fields is considered unique if it varies by one or more characters. The language utilised in
the datasets is also specified
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data not captured within these constraints. This limitation underscores the need for an NLP-based approach to
enhance data extraction.

The database is in Romanian, and translation is required using the Google Translator library from the Deep-
Translator Python package before proceeding with entity extraction through NLP. Like the AAMD Object
Registry, the sentences in this dataset often lack explicit verbs, with actions implied and inferable. Unlike the
AAMD dataset, however, the ROF dataset does not adhere to standardised conventions for data reporting. The
high variability in data formatting and content values led to its classification as unstructured.

The final dataset analysed in this study originates from the Catalogue of Wartime Losses, a database of art
objects maintained by the Division for Looted Art (DLA) within Poland’s Ministry of Cultural and National
Heritage. This database records items looted from Poland or sold under duress during World War II. It stores
information on over 11,000 objects, contributed by both private individuals and museums and includes categories
such as ‘Archaeology,’ ‘Ceramics,’ ‘Glass,’ and ‘Painting.’ Each record can contain details such as title, artist or
producer, inventory number, object type and category, date of creation, material and technique, size, weight,
signature, heir or legal owner, and related keywords.

The current study focuses on the data provided in the ‘Author / School / Workshop’ field, which encompasses
multiple entity types, including individuals, organisations (e.g. schools or workshops), and locations. Distin-
guishing among these types is critical for accurate tagging and mapping in the resulting KG. Proper classification
facilitates the association of distinct entities, enabling the construction of meaningful relationships in the pro-
cessed database. Since the data are available in both Polish and English, English was selected as the primary
language for processing to ensure consistency, as well as compatibility with the other datasets (AAMD and ROF).
Although this field lacks structured sentences, its quasi-structured nature allows NLP models to classify and
extract relevant entities effectively.

These three datasets were selected as representative examples of the data relevant to the RITHMS project. The
AAMD dataset provides provenance information written in a format that has become a de facto standard,
commonly adopted by museums and auction houses. The ROF database was chosen to represent object
description databases, as it offers comprehensive details, not only about the artist and materials used but also
about the depicted subject matter, which is often omitted in other databases. Finally, the DLA dataset serves as an
example where fields are reported too broadly, necessitating further refinement to narrow down the classification.

As highlighted, the datasets used in this research exhibit significant diversity due to the unique structure of each
data source. They range from quasi-structured entries with concise textual information to datasets with extensive
free-text fields; necessitating fine-tuned NLP approaches for information extraction.

2.3 The named entity recognition models utilised

The absence of pre-existing labelled datasets tailored to cultural heritage object descriptions or provenance
information presents a significant obstacle to creating automatic entity extraction models. This issue is further
compounded by the substantial time and financial resources required for manual data labelling. To overcome this,
a strategy was implemented to first generate annotated data and subsequently evaluate its accuracy through
manual validation. This procedure leveraged pre-trained NLP models for named entity extraction. While tradi-
tional NLP NER models are effective, they are typically limited to pre-defined entity types. In contrast, Large
Language Models (LLMs) offer greater flexibility by extracting any kind of entity through natural language
instructions.

To identify the most effective solution, the performance of advanced generative LLMs capable of labelling raw
data without supervision was compared. Recent advancements in generative models, equipped with extensive
knowledge bases, have demonstrated their capability to efficiently tackle a wide range of NLP tasks. At the time
of writing, the leading model available was Llama3 from Meta, which provides a smaller and more efficient
model than GPT-4 (a state-of-the-art LLM developed by OpenAI [14]). Moreover, unlike GPT-4, it is freely
available. Meta has provided a comparison between the best LLM and Llama3, showcasing that Llama3 performs
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the best in many common tasks [15]. Llama3 is Meta AI’s largest family of LLMs. Two versions of Llama3.0
have been released: a smaller one of 8B parameters and a greater one of 70B parameters. Two different versions
of these models have been released: ‘Instruction-Tuned Models’ designed for assistant-like chat interactions and
training, and the general ‘Pre-trained Models’ which can be fine-tuned for various applications. Given Llama3’s
better performance and accessibility, the 8B parameter ‘Instruction-Tuned Model’ was selected to label a subset
of the datasets, due to constraints of computational resources which could not load the 70B one.

The chosen model was ‘instructed’ to get the desired annotations through a series of different prompts designed
to extract named entities from the input text. After some attempts, the most effective way to interact with Llama3
was found to be asking for one specific class of entities at a time. As a result, the query.2 was to return labelled
data with one single class of tags per query, and this process was repeated for each class to ensure full labelling
across all tags.

While Llama3 was used to create a labelled subset of the datasets, smaller, specialised models for NER were
subsequently fine-tuned using the tagged dataset. Several Python libraries have been released to perform NER,
including spaCy [16], Huggingface [17], Flair, CoreNLP, and Scikit-learn, to name a few. Among these, spaCy,
developed by Explosion, is one of the most widely used libraries for NER due to its high performance and fast,
easy-to-use, production-ready APIs. Explosion also provides both open-source implementation and ‘open-weight
models’ of different kinds, based on either Convolutional Neural Networks (CNNs) or Transformers like BERT
and ROBERTa [18–20]. SpaCy English models include three CNN-based pipelines of different sizes: ‘en_-
core_web_sm’ (12 MB), ‘en_core_web_md’ (40 MB), and ‘en_core_web_lg’ (560 MB). Additionally, a model
based on the Transformer architecture was released, ‘en_core_web_trf’ (436 MB), which by default includes the
RoBERTa Transformer.

This study examined two of the largest models from spaCy: the CNN-based model (‘en_core_web_lg’) and the
Transformer model (‘en_core_web_trf’), as they are known to offer the best performance for named entity
recognition [16]. The ‘en_core_web_lg’ achieves a precision, recall, and F1-score of 0.85, 0.86, and 0.85,
respectively, while the equivalent scores for ‘en_core_web_trf’ are 0.90, 0.90, and 0.90. Despite these promising
metrics, the direct application of these pre-trained models to the RITHMS datasets yielded sub-optimal results.
This is primarily due to the significant differences between the RITHMS datasets and the data used to train the
models, such as OntoNotes 5. The RITHMS datasets feature shorter contexts and distinct sentence structures, like
the challenges faced by NER models applied to X posts [21]. In contrast, OntoNotes 5 consists of a vast array of
data, including news articles, conversational telephone speech, weblogs, Usenet newsgroups, broadcasts, talk
shows, web data, Wikipedia, and various book corpora. The hyperparameters used to train spaCy models were
primarily the default settings recommended by Explosion3. In addition to spaCy models, the zero-shot model
GLiNER (Generalist and Lightweight Model for Named Entity Recognition) was utilised. GLiNER, which
leverages a bidirectional type of Transformer, enables parallel output computations, making it an attractive
alternative for performing entity labelling without needing training data. This model was assessed to determine its
potential for labelling the RITHMS datasets, given its ability to handle entity extraction in a zero-shot, domain-
independent manner.

2 The Llama3’s ‘system’ behaviour was set to ‘‘You are a very experienced Natural Language Processing tool. Recognise
entities with label ‘LABEL/CLASS’ Moreover, we passed an example of the input text to the ‘user’ role together with the
output we would like to have (list of entities recognised of the specific CLASS [start character index, end character index,
CLASS]) to the ‘assistant’ role.
3 https://spacy.io/usage/training#quickstart. We reduced the encoder size of the large model (i.e. spacy.MaxoutWin-
dowEncoder.v2) from 256� 8 to 96� 4 to lower memory use and approximate the Transformer model size. However, the overall size stayed
similar since most space is taken by large static vectors, which improve accuracy, so we kept the rest unchanged. Further details on the models can
be found in https://github.com/IIT-CCHT/NER-models-CH-datasets.
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2.4 Creation of the labelled datasets

The annotation process was an iterative procedure (cf., Fig. 1), performed for each dataset separately.
Llama3 was initially used to label a subset of 400 texts from each dataset. While larger sample are often

recommended—sometimes starting at 1, 000 lines—this sample size was deemed sufficient to represent the data
and effectively capture the semantic patterns likely to be encountered by the models. Subsequently, experts in
computer science and cultural heritage manually refined the classifications to ensure accuracy. The resulting
datasets were then used to train spaCy models (cf., Fig. 1), specifically the large English model (‘en_-
core_web_lg’) and Transformer-based (‘en_core_web_trf’) model. Finally, the best-performing fine-tuned model,
selected from the large English and Transformer-based models, was used to label the remainder of the datasets.
This other part of the dataset, which was annotated using the best model, was then refined by experts in computer
science and cultural heritage to provide accurate annotations.

The entity tags used to annotate data were derived from the standard set found in spaCy models, with
additional domain-specific tags tailored to the project. To facilitate the understanding of similarities and differ-
ences among the datasets Fig. 2 provides a visual representation4—a Venn diagram—that illustrates both the
shared tags and those unique to each dataset.

In the case of the AAMD database, the labels used are a subset of the classical: ORG, PERSON, GPE, LOC,
DATE, EVENT, WORK_OF_ART and CARDINAL. During the annotation and validation phases, a stan-
dardised list of conventions was created to ensure consistent tagging. For instance, organisations (ORGs) were
extended to include families, private collections, and surname-based groups (e.g. ‘the Smiths’). For events
(EVENTs), verbs such as ‘acquired’ and ‘purchased’ were also classified as event-related. Moreover,
OTHER_QUANTITY was introduced to indicate numbers defining percentages and quantities of artefact pie-
ces. Finally, given the frequent occurrence of terms like ‘certificate of authenticity’ or ‘gift agreement’ in
provenance texts, a DOCUMENT tag was added to capture such references.

In the case of the ROF dataset, the labels used are again a subset of the classical spaCy tags, with additional
domain-specific labels. These include ORG, PERSON, GPE, LOC, DATE, EVENT, MONEY, WORK_-
OF_ART, QUANTITY, and CARDINAL. For PERSONs, individuals depicted in artworks (e.g. portrait subjects
or religious figures) were excluded, as they were not relevant to the context of the RITHMS project. Furthermore,
additional tags were incorporated to capture specific details, such as: CONDITION (state of conservation),
MATERIAL/TECH (material or technique), DESCRIPTION (free descriptive text that does not fall under another

Fig. 1 Pipeline to create the
dataset to train Machine
Learning models for NER

4 The same kind of representation will be provided for each dataset.
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entity type), PRODUCTION (e.g. Roman, Impressionist, Belgrade workshop), and PART (specific parts of an
object) and OTHER_QUANTITY (numbers defining percentages and quantities of artefact pieces). One of the
most challenging aspects was determining what should be labelled with the DESCRIPTION tag. In some cases,
the description includes material-related information—for example, ‘Tempera on wood presents an inscription in
ochre, in the Greek language’. Although compositional details may appear within the descriptive text, we chose
to retain the primary material information under the MATERIAL/TECH tag, while assigning all remaining
contextual or interpretive content to the DESCRIPTION tag. Moreover, the content of the descriptions varies: in
some cases, the text begins with the title of the opera, which we tag as WORK_OF_ART. In other cases—such as
with coins—the title may be absent. In these instances, we instead tag terms like ‘ducat’ or ‘coin’ as
WORK_OF_ART, as they function as the primary identifiers within the description. To maintain consistency, we
assign a unique WORK_OF_ART tag to each description.

Lastly, the DLA dataset required comparatively fewer tags, and no additional domain-specific labels were
added. Since the data from the Catalogue of Wartime Losses was relatively structured and primarily required only
the classical spaCy NER labels were applied: PERSON, ORG, GPE, LOC, DATE and EVENT together with
PRODUCTION (the only tag that is not part of spaCy’s standard tag set).

To assess the capabilities of the new models, each dataset was divided into three groups, comprising 70% for
training, 20% for validation, and 10% for testing. Table 2 reports the resulting distribution of the datasets.

3 Results and discussion

Once the complete labelled datasets were obtained—the so-called ‘‘ground truth’’ (GT)—the qualitative results of
the best spaCy models were analysed as they were to assess whether classical pre-processing techniques could
yield better results.

When using off-the-shelf spaCy models (also referred to as ‘original spaCy models’), several issues were
encountered, which tended to fall into one of two categories. The first common error was data misclassification,
for example a PERSON name was classified as an ORG. The second was that certain entities were classified
correctly but had missing or extraneous parts, for instance, ‘John’ in ‘Professor John Stone’ was correctly
classified as PERSON but the classification performed by the model missed the surname ‘Stone.’ Conversely, it
might classify the entire string ‘Professor John Stone’ as PERSON, including the role ‘Professor,’ which should
not be labelled as such.

Fig. 2 Entity tags used
compared with the spaCy
tags
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Pre-processing steps commonly employed to enhance the performance of NLP models were applied to evaluate
their effectiveness in improving the entity recognition of the datasets under analysis. These included removing
punctuation marks and titles (e.g. ‘Mr.’) and eliminating stop words (e.g. ‘the’ and ‘and’). However, the removal
of punctuation led to an even higher misclassification error. This was the case for both the ‘en_core_web_lg’ and
‘en_core_web_trf’ models. For instance, in the provenance ‘John Stone, Jersey City, N.J, 1980–2003; Anna and
John. Grae, New York, 2003–2010; Yale University Art Gallery, New Haven, Conn.’, removing the punctuation
marks led to the entire string ‘Yale University Art Gallery New Haven’ being wrongly classified as an ORG.
Conversely, when retaining the punctuation marks, ‘New Haven’ was correctly classified as a separate entity
distinct from ‘Yale University Art Gallery,’ and the two were rightly classified as GPE and ORG, respectively. A
similar error resulted from removing punctuation from the following provenance sample: ‘(Art Treasures Gal-
lery), Hong Kong; Purchased by Mr. Stone [b. 1942] and Henry Stain [b. 1930], 1997, Englewood, CO; Gifted to
the Denver Art Museum, 2018 [1] on loan since 2016.’ In this case, the removal of the punctuation led to the
entire string ‘Mr. Stone b 1942’ being wrongly classified as a PERSON. Furthermore, as is clear from the
examples provided, certain punctuation marks (such as semicolons and periods) delineate the beginning and end
of distinct events, which is a widespread practice when writing the provenance of artefacts. Consequently, the
decision was made to retain punctuation, which resolved these issues.

Similarly, the removal of honorifics such as ‘Mr.’, ‘Ms.’, and ‘Mrs.’ led to names being incorrectly classified as
organisations (ORG) instead of individuals (PERSON). This issue was particularly pronounced in the large
English model compared to the Transformer-based model. For example, the name ‘Red’ was misclassified as an
ORG after honorifics were removed from the following sentence: ‘According to a signed and notarized statement
by Mr. Red supplied to Sotheby’s, New York (May 11, 2012), he acquired the figures in Nayarit in 1946 and
brought them to California in 1951.’ Importantly, this misclassification did not occur when titles were retained.
The same issue was seen in the example, ‘Acquired by John Stone, London, at Portobello Road market, London,
ca. 1969-1971. Consigned by Mr. Stone to Red, London, April 28, 2010, lot 20. Sold to Rhea Gallery, Zurich.
Sold by Rhea Gallery, Zurich, to the Museum’ where ‘Stone’ without title was incorrectly classified as an ORG.
Notably, this error was particularly evident when only surnames were provided, while the presence of the first
name typically led to the correct classification as a PERSON.

The removal of stop words also proved detrimental to the performance of NLP models, as demonstrated in the
following example: ‘(Arte Primitivo),NewYork; purchased byTheodore and JohnT.Mohar, 1973; by descent to the
Mohar family; consigned to (Arte Primitivo), New York; purchased by Gordon DeBiasi, Birmingham, MI, 2006;
gifted to the Denver Art Museum, 2014.’ Unsurprisingly, the removal of the word ‘and’ resulted in the name
‘Theodore’ being classified incorrectly. Also consider this example: ‘Ex coll. Robert Stone, United States, said to
have been purchased from Albert Rayan (1928-1973), New York, New York. Said to have been sold by Stone to a
London dealer. Ex coll. Robert Stone, said to have been purchased from an English dealer, New York, New York,
November 1999’. In this case, removing stop words led to ‘Stone London’ being misrecognised as a single entity.

These examples highlight the useful role that punctuation, honorifics, and stop words play in maintaining the
semantic integrity of text and ensuring accurate classification. While the removal of these elements is considered a
best practice to enhance model efficiency, our results demonstrate that it can result in significant inaccuracies and

Table 2 Distribution of training, validation, and testing samples from each dataset

Dataset (language) Field to process # Of training samples # Of validation samples # Of test samples

AAMD object Provenance 887 253 128

Registry (English)

Obiecte furate Description 606 173 87

(Romanian)

Catalogue of Author / Workshop / 718 205 103

Wartime losses School
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Table 3 Results of the
spaCy English and the
GLiNER models on the
AAMD dataset. Bold indi-
cates the best result for
each metric, while italics
denotes the second-best
value

Model Entity Precision Recall F1-score

DATE 71:74% 73:66% 73:66%

PERSON 67:51% 71:51% 71:51%

Original spaCy GPE 92:54% 92:54% 92:54%

large English ORG 69:04% 37:96% 37:96%

model EVENT 0:00% 0:00% 0:00%

CARDINAL 27:59% 47:06% 47:06%

LOC 0:00% 0:00% 0:00%

WORK_OF_ART 0:00% 0:00% 0:00%

DATE 76:94% 77:46% 77:20%

PERSON 84:53% 66:47% 74:42%

Original spaCy GPE 92:54% 92:54% 92:54%

Transformer-based ORG 70:67% 51:86% 59:82%

English model EVENT 0:00% 0:00% 0:00%

CARDINAL 37:25% 55:88% 44:71%

LOC 0:00% 0:00% 0:00%

WORK_OF_ART 0:00% 0:00% 0:00%

DATE 74:63% 55:80% 63:86%

PERSON 68:47% 63:80% 66:05%

GLiNER large GPE 0:00% 0:00% 0:00%

English model ORG 100:00% 0:20% 0:39%

(Transformer-based) EVENT 23:64% 3:49% 6:09%

CARDINAL 18:18% 5:88% 8:89%

LOC 0:00% 0:00% 0:00%

WORK_OF_ART 0:00% 0:00% 0:00%

DOCUMENT 33:33% 31:58% 32:43%

OTHER_QUANTITY 0:00% 0:00% 0:00%

DATE 93:27% 92:86% 93:06%

PERSON 90:70% 92:58% 91:63%

Fine-tuned GPE 97:14% 96:71% 96:92%

spaCy large ORG 94:56% 91:78% 93:15%

English model EVENT 91:20% 91:94% 91:57%

CARDINAL 96:97% 94:12% 95:52%

LOC 0:00% 0:00% 0:00%

WORK_OF_ART 50:00% 50:00% 50:00%

DOCUMENT 80:00% 63:16% 70:59%

OTHER_QUANTITY 60:00% 60:00% 60:00%

DATE 95:69% 93:16% 94:41%

PERSON 88:34% 88:86% 88:60%

Fine-tuned GPE 92:98% 97:03% 94:96%

spaCy ORG 94:30% 90:78% 92:51%

Transformer-based EVENT 92:62% 91:77% 92:19%

English model CARDINAL 86:05% 92:50% 89:16%

LOC 25:00% 50:00% 33:33%

WORK_OF_ART 72:73% 47:06% 57:14%

DOCUMENT 25:00% 50:00% 33:33%

OTHER_QUANTITY 72:73% 47:06% 57:14%
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loss of meaning. Rather, retaining these characters and strings was proven to improve the overall performance of
NLP models and prevent erroneous entity recognition and classification.

3.1 Comparative evaluation of the results for each fine-tuned model against the original model

This section presents and compares the results of the original models with those of the fine-tuned models. Table 3
presents the precision, recall, and F1 scores for both the original and fine-tuned models on the AAMD dataset,
with bolded and italicised figures indicating the best and second-best results, respectively. Furthermore, Fig. 3
presents the cardinality of each entity label or class. Analysing these cardinalities helps in interpreting the results,
as data-driven models, as is the case with neural network-based models, are highly dependent on both the quality
and quantity of the training data. As we will demonstrate empirically, model performance is strongly influenced
by the number of available samples for each class.

Among the original three, the spaCy Transformer-based model demonstrated equal or superior performance
across all entity classifications, but slightly worse on the classification of CARDINAL entities. However, the
zero-shot learning model, GLiNER, was also capable of effectively classifying entities, particularly for domain-
specific tags that were added to the ‘‘classical labels’’ (the ones used by the pre-trained spaCy models), such as
DOCUMENT. Regardless, the spaCy Transformer-based model performed both better and more consistently.

Notably, the fine-tuned models achieve better results than the original, though neither consistently outper-
formed the other across all categories. For example, the Transformer-based model achieved a higher F1-score for
classifying DATE, GPE, EVENT, LOC, and WORK_OF_ART entities. Conversely, the large model better-
classified PERSON, ORG, CARDINAL, DOCUMENT, and OTHER_QUANTITY entities. The entities that
were classified most effectively were DATE, PERSON, GPE, ORG, EVENT, and CARDINAL. LOC,
WORK_OF_ART, OTHER_QUANTITY, and DOCUMENT were poorly classified. This is probably due to the
small sample of these entity types in the chosen datasets. Indeed, the training dataset included only 9 instances of
LOC entities, 82 of WORK_OF_ART, 27 of OTHER_QUANTITY and 136 of DOCUMENT, which are sig-
nificantly less represented than the other classes (cf., Fig. 3).

Further examination of the errors revealed that the misclassification of both LOC and WORK_OF_ART was
primarily due to the span of information the model considered. For example, in the GT, the entity ‘tomb of
Nesbanedjed’ was classified as LOC. In practice, however, the model classified ‘Nesbanedjed’ alone as PERSON,
which is still technically correct. Overall, the model struggles with WORK_OF_ART classifications. For

Fig. 3 Entities’ cardinalities
in the AAMD dataset
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instance, the GT label for ‘held base of Funerary Couch’ is WORK_OF_ART, but the model later classified
‘held’ as an EVENT, informed by the tagging convention which annotated informative verbs as events. In this
case, however, the text is a description of the base of the artefact instead of an actual EVENT. To improve the
results, we suggest limiting verb annotations to those referring to real EVENTs (like ‘to purchase’ and ‘to
acquire’), where possible. For example, we believe it is unnecessary to tag verbs like ‘hold’ if it is referring to part
of a WORK_OF_ART and are not related to a ’provenance EVENT’ of legal or physical ownership. There are
also discrepancies in the case of OTHER_QUANTITY tags, which likely stemmed from differences in the
labelling of the data. Most of the discrepancies arose from the presence of an article preceding the entity. For
instance, if the GT was ‘a group of ten,’ the resulting tagged part by the models was ‘group of ten,’ which
correctly encompassed the information of interest, but omitted the article. In this case, we suggest removing
unnecessary information from what is labelled, as it could be the case with the articles.

Interestingly, when classifying DOCUMENT, the large model outperformed the Transformer model. However,
the test set contained only 19 samples of this entity type, meaning that even a small number of correct classi-
fications can significantly affect the percentage error.

Just as LOC and WORK_OF_ART were occasionally confused, similar errors were observed in the classifi-
cation of DOCUMENTs, where misclassification resulted from the model’s inability to interpret an object title as
such. Nonetheless, the labelling of these parts was still largely correct. For example, in the case of ‘Charles Stone
Ltd. Antiquities Catalogue 173’ (which should be tagged as DOCUMENT because it is the title of an auction
catalogue), the model classified ‘Charles Stone Ltd.’ as an organisation (ORG). This classification is correct per
se, but it would be ideal for the model to label the whole string as DOCUMENT. We believe this type of error can
be addressed through post-processing, by merging the ORG and DOCUMENT entities when an organisation
name precedes or follows terms like ‘catalogue’, ‘archive’, or ‘document’. In such cases, the organisation should
be treated as part of a single, unified DOCUMENT entity.

Table 4 presents the original and fine-tuned models’ precision, recall, and F1 scores for the ROF dataset.
Comparing the original models, the Transformer-based model performed equally well or better in almost all cases
except for CARDINAL and QUANTITY. Further, GLiNER performed worse than the original spaCy models and
was unable to classify custom domain-specific labels like PRODUCTION, DESCRIPTION, and CONDITION.
As with the processing of the AAMD dataset, the fine-tuned models showed improved results over the original
models.

The fine-tuned spaCy models outperformed the original models, particularly when classifying CARDINAL
and OTHER_QUANTITY entities; this is relatively unsurprising, considering the original spaCy models were not
trained on the OTHER_QUANTITY label, hindering their ability to classify it. Conversely, the CARDINALITY
label represents a class referring to numerical information, which is inherently more identifiable and less
ambiguous. Moreover, the categories that differentiate numerical classes, such as MONEY, QUANTITY,
OTHER_QUANTITY, and CARDINAL, are defined in a way that ensures clear distinctions among them.
MONEY refers to information on monetary values (in this case the metrics are zero because there are no instances
of MONEY in the test set, cf. Fig. 4). QUANTITY refers to size and distance measures as well as weights
(aligned with the definition provided by spaCy). OTHER_QUANTITY includes percentages (e.g. the percentage
of silver in a metal artefact) and portions of items, as in the case ‘one third preserved’, referring to a broken
artefact. CARDINAL is defined as all the numbers that do not fall into other categories (as per the common spaCy
definition). It should be noted that we have not used all the spaCy labels to annotate the datasets, but only those
which were relevant to the datasets under study (e.g. ORDINAL was not found to be relevant), cf., Fig. 4.

Overall, the Transformer-based model outperformed the large model for all tags except CARDINAL,
QUANTITY, and OTHER_QUANTITY. In the case of CARDINAL and OTHER_QUANTITY, the F1 scores
between the large and Transformer-based models are quite close, at 82:67% versus 79:49% (CARDINAL) and
63:64% versus 66:67% (OTHER_QUANTITY). A greater difference was seen in the F1-score for the two
models’ classification of QUANTITY: 63:59% and 56:62%. As stated, the Transformer-based model achieves
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Table 4 Results of the spaCy English and the GLiNER models on the ROF dataset. Bold indicates the best result for each
metric, while italics denotes the second-best value

Model Entity Precision Recall F1-score

DATE 33:33% 22:41% 26:80%

PERSON 31:25% 34:09% 32:61%

Original spaCy GPE 43:18% 39:58% 41:30%

large English ORG 10:43% 40:00% 16:55%

model EVENT 0:00% 0:00% 0:00%

CARDINAL 22:45% 64:71% 33:33%

LOC 0:00% 0:00% 0:00%

WORK_OF_ART 0:00% 0:00% 0:00%

QUANTITY 7:81% 4:59% 5:78%

MONEY 0:00% 0:00% 0:00%

DATE 38:10% 27:59% 32:00%

PERSON 30:51% 40:91% 34:95%

Original spaCy GPE 68:75% 68:75% 68:75%

Transformer-based ORG 10:00% 3:33% 5:00%

English model EVENT 0:00% 0:00% 0:00%

CARDINAL 23:88% 47:06% 31:68%

LOC 100:00% 70:59% 82:76%

WORK_OF_ART 0:00% 0:00% 0:00%

QUANTITY 25:58% 20:18% 22:56%

MONEY 0:00% 0:00% 0:00%

DATE 47:62% 34:48% 40:00%

PERSON 27:05% 75:00% 39:76%

GLiNER large GPE 0:00% 0:00% 0:00%

English model ORG 0:00% 0:00% 0:00%

(Transformer-based) EVENT 16:67% 1:85% 3:33%

CARDINAL 0:00% 0:00% 0:00%

LOC 1:47% 33:33% 2:82%

WORK_OF_ART 14:65% 22:55% 17:76%

QUANTITY 14:29% 9:17% 11:17%

MONEY 0:00% 0:00% 0:00%

PART 0:00% 0:00% 0:00%

MATERIAL/TECH 0:00% 0:00% 0:00%

OTHER_QUANTITY 0:00% 0:00% 0:00%

PRODUCTION 0:00% 0:00% 0:00%

DESCRIPTION 0:00% 0:00% 0:00%

CONDITION 0:00% 0:00% 0:00%

DATE 38:98% 39:66% 39:32%

PERSON 59:62% 70:45% 64:58%

Fine-tuned spaCy GPE 74:07% 41:67% 53:33%

large English ORG 38:24% 43:33% 40:62%

model EVENT 64:65% 59:26% 61:84%

CARDINAL 75:61% 91:18% 82:67%

LOC 0:00% 0:00% 0:00%

WORK_OF_ART 41:18% 34:31% 37:43%

QUANTITY 63:89% 63:30% 63:59%

MONEY 0:00% 0:00% 0:00%

PART 31:37% 27:12% 29:09%

MATERIAL/TECH 48:95% 39:55% 43:75%
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higher scores for most tags (13 out of 16) compared to the large model. This improvement is likely due to the
superior ability of Transformer-based models to remember and process longer patterns, in contrast to the CNN-
based models. One poorly performing category is LOC, understandably, as there are very few samples (3) in the
test dataset. Another problematic label for both models was DESCRIPTION, but for a different reason. The
DESCRIPTION category is the most challenging as it contains free text that could be classified under other tags,
but doing so would be unconstructive and even detrimental. For example, consider the object description ‘icon
depicting Mary, mother of Jesus, and the Christ child on a gold background.’ In this case, Mary and Jesus would

Table 4 (continued)

Model Entity Precision Recall F1-score

OTHER_QUANTITY 100:00% 50:00% 66:67%

PRODUCTION 55:56% 21:74% 31:25%

DESCRIPTION 20:93% 18:65% 19:73%

CONDITION 39:29% 25:58% 30:99%

DATE 54:24% 55:17% 54:70%

PERSON 71:15% 84:09% 77:08%

Fine-tuned GPE 66:67% 45:83% 54:32%

spaCy ORG 46:67% 46:67% 46:67%

Transformer-based EVENT 59:66% 65:74% 62:56%

English model CARDINAL 70:45% 91:18% 79:49%

LOC 14:29% 33:33% 20:00%

WORK_OF_ART 53:76% 49:02% 51:28%

QUANTITY 56:36% 56:88% 56:62%

MONEY 0:00% 0:00% 0:00%

PART 42:16% 36:44% 39:09%

MATERIAL/TECH 56:02% 52:54% 54:23%

OTHER_QUANTITY 87:50% 50:00% 63:64%

PRODUCTION 41:18% 30:43% 35:00%

DESCRIPTION 28:64% 30:57% 29:57%

CONDITION 38:71% 27:91% 32:43%

Fig. 4 Entities’ cardinalities
in the ROF dataset
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both be tagged PERSON, but to include them in the resulting KG would have a detrimental impact on the analysis
of gathered data as they are not real actors in the circulation of cultural goods. Consequently, this information
(which often follows the key word ‘‘depicting’’, ‘‘depicts’’, ‘‘representing’’ or ‘represents’’) should be tagged
DESCRIPTION, to be added as a property to the artefact data object. To reduce the number of misclassifications
of DESCRIPTION, we believe that it would be beneficial to adopt a more deterministic classification approach,
relying on ‘trigger verbs’ like those just mentioned.

Lastly, Table 5 presents the original and fine-tuned models’ precision, recall, and F1-score from processing the
DLA dataset. Overall, the original spaCy models performed similarly while the performance of the GLiNER
model was worse. Notably, the latter was unable to classify custom labels like PRODUCTION. However, as with
the case of the AAMD dataset, the fine-tuned models demonstrated improved performance compared to the
original models. Of these, the Transformer-based model outperformed the larger model for all tags except GPE.
While both models can classify all the tags, their performance in classifying LOC entities was significantly lower,
though this kind of entity is not the least represented in the dataset (cf., Fig. 5). Upon analysing the errors in the

Table 5 Results of the
spaCy English and the
GLiNER models on the
DLA dataset. Bold indi-
cates the best result for
each metric, while italics
denotes the second-best
value

Model Entity Precision Recall F1-score

DATE 95:12% 92:86% 93:98%

PERSON 85:71% 64:86% 73:85%

Original spaCy GPE 71:79% 80:00% 75:68%

large English ORG 0:00% 0:00% 0:00%

model EVENT 0:00% 0:00% 0:00%

LOC 66:67% 12:50% 21:05%

DATE 100:00% 88:10% 93:67%

PERSON 76:92% 67:57% 71:94%

Original spaCy GPE 77:50% 88:57% 82:67%

Transformer-based ORG 0:00% 0:00% 0:00%

English model EVENT 0:00% 0:00% 0:00%

LOC 87:50% 43:75% 58:33%

DATE 90:70% 92:86% 91:76%

PERSON 61:36% 72:97% 66:67%

GLiNER large GPE 0:00% 0:00% 0:00%

English model ORG 0:00% 0:00% 0:00%

(Transformer-based) EVENT 0:00% 0:00% 0:00%

LOC 23:33% 87:50% 36:84%

PRODUCTION 0:00% 0:00% 0:00%

DATE 100:00% 100:00% 100:00%

PERSON 78:95% 81:08% 80:00%

Fine-tuned GPE 73:17% 85:71% 78:95%

spaCy large ORG 0:00% 0:00% 0:00%

English model EVENT 87:50% 100:00% 93:33%

LOC 66:67% 12:50% 21:05%

PRODUCTION 57:14% 66:67% 61:54%

DATE 100:00% 100:00% 100:00%

PERSON 88:89% 86:49% 87:67%

Fine-tuned GPE 66:67% 85:71% 75:00%

spaCy large ORG 100:00% 100:00% 100:00%

Transformer-based EVENT 100:00% 100:00% 100:00%

English model LOC 100:00% 25:00% 40:00%

PRODUCTION 80:00% 66:67% 72:73%
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classification of LOC entities, it was observed that most misclassifications occurred with LOC being classified as
GPE. This type of error is not a major concern for us, as our primary goal is to distinguish between places,
organisations, and people, regardless of whether the place is precisely defined spatially. Our suggestion would be
to use only one unique label to tag both non-political locations, or geographical features, and GPEs.

3.2 Evaluation of model robustness

This section examines whether a model trained on one dataset can classify the same types of entities in another
dataset. As shown in Table 6, the models perform poorly on other datasets, reinforcing that their efficacy derives
from having been fine-tuned on a dataset with a specific structure, scope, and set of labels. This outcome was
anticipated, given the significant differences in the information contained within each dataset and the way that
information is presented. Notably, the classes that are classified most accurately are GPE and DATE, which are
two of the easiest to distinguish among entity types.

3.3 Determination of the best model

Table 7 presents the F1 scores of the fine-tuned models across the three datasets. The results are promising,
with high F1 scores achieved for the AAMD Object Registry and the Catalogue of Wartime Losses, despite the
models being fine-tuned with only a few hundred labelled samples.

The poorest results are observed with the labelling of the ROF dataset, which contains the highest number of
tags (16 different labels). In contrast, the AAMD dataset comprises 10 entities, while the DLA dataset includes
only 7 tags. While the training sample sizes are similar across all datasets that as the number of entity types
increases, so does the requirement for additional training samples.

3.4 Comparative evaluation of the best model, observations, and challenges

Figure 6 presents three different provenance samples from an open dataset of objects in the collection of the
Metropolitan Museum of Art (‘the Met’) that have been linked to known traffickers. We utilised the best model

Fig. 5 Entities’ cardinalities
in the DLA dataset
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Table 6 F1 scores of the best models tested on the other datasets tested evaluated on datasets other than those they were fine-
tuned on

Model Entity F1-score

Transformer fine-tuned on ORG 37.82%

DLA used on AAMD DATE 38.04%

LOC 0:00%

PRODUCTION 0:00%

EVENT 8:75%

GPE 53:61%

PERSON 50:95%

Transformer fine-tuned on ORG 11:76%

AAMD used on DLA DATE 94:25%

LOC 30:00%

PRODUCTION 0:00%

EVENT 22:22%

GPE 78:38%

PERSON 79:45%

Transformer fine-tuned on ORG 19:39%

AAMD used on ROF DATE 36:04%

LOC 0:00%

PRODUCTION 0:00%

EVENT 17:85%

GPE 37:50%

PERSON 35:38%

CARDINAL 27:10%

WORK_OF_ART 7:80%

OTHER_QUANTITY 2:13%

ORG 19:39%

DATE 36:04%

Transformer fine-tuned on ORG 50:78%

ROF used on AAMD DATE 54:66%

LOC 0:00%

PRODUCTION 0:00%

EVENT 68:33%

GPE 47:32%

PERSON 67:94%

CARDINAL 74:70%

WORK_OF_ART 12:77%

OTHER_QUANTITY 0:00%

ORG 50:78%

DATE 54:66%

Transformer fine-tuned on ORG 34:21%

DLA used on ROF DATE 15:38%

LOC 0:00%

PRODUCTION 0:82%

EVENT 17:96%

GPE 45:36%

PERSON 14:69%

Transformer fine-tuned on ORG 0:00%

ROF used on DLA DATE 96:47%

LOC 0:00%
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fine-tuned on the AAMD dataset, which contains similar provenance information, to evaluate its performance on
this external dataset. Our findings indicate that the model performed quite accurately. In sample (a), there is only
one error: ‘Sotheby’s’ in the text ‘Sotheby’s Sale 6562’ should be classified as an ORG rather than as part of the
EVENT. However, this type of error can be corrected through a post-processing step. Sample (b) features
‘American,’ which is incorrectly classified as part of a PERSON name but should be categorised as a GPE.
Finally, the third example (c) is classified correctly.

In the context of the RITHMS project, the most crucial data for extracting named entities pertains to prove-
nance information. As introduced above, this type of data provides insights into the ownership history of

Table 6 (continued)

Model Entity F1-score

PRODUCTION 0:00%

EVENT 0:00%

GPE 76:19%

PERSON 62:07%

Table 7 Cumulative F1-scores of the fine-tuned models

F1-score of the fine-tuned large English model F1-score of the fine-tuned transformer-based English model

AAMD 92:93% 94:23%

ROF 81:01% 85:15%

DLA 46:08% 50:23%

Fig. 6 NER detections on
three samples from the Met
database using the best
NER model fine-tuned on
the AAMD provenance
dataset
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artefacts, which is valuable for understanding the connections between specific organisations and individuals
associated with each artefact [22]. Notably, this type of dataset (represented by the AAMD) yields the highest
performance, attaining a high F1-score of 94:23%.

The most significant challenge was extracting named entities from the ROF dataset (cf., Table 4). This
difficulty arises because the DESCRIPTION often contains information that can easily be classified into other
categories. Therefore, a potential solution is to consider removing the description of what is represented in the
artefact as a pre-processing step, as it can introduce uncertainty in the labelling process for the models.

3.5 Opportunities for cultural heritage research

The methodology outlined in the present study contributes to the broader development of tools for automating
provenance analysis and detecting risk in cultural heritage datasets. There are also other, relevant and in some
ways similar, projects in the field of cultural heritage that aim to improve the accessibility and interoperability of
heritage datasets. For instance, ArCo, the Italian Cultural Heritage Knowledge Graph, has structured extensive
cultural heritage data into Resource Description Framework (RDF) triples, facilitating semantic interoperability
across tools [23].

Leveraging more computational methods, the Heritage Connector project has employed Machine Learning to
link museum catalogues with external datasets such as Wikidata, improving accessibility and the consolidation of
data on related records. The project’s methodology, discussed in [24] shares many similarities with our own
approach, particularly in the use of NLP and NER techniques for entity extraction and KG construction within the
cultural heritage domain. However, while the Heritage Connector project aims to construct a KG using neural
networks, the methodology described in the present study goes beyond KG construction to integrate SNA,
providing insights into the relationships and patterns among the entities in the source datasets. Further, our fine-
tuned models boast much higher F1 scores with a quite small number of labelled samples (few hundred),
suggesting a strong balance between precision and recall, leading to more accurate and reliable results. This is
particularly valuable for the context in which our models were developed, where both the inclusion of relevant
entities and the exclusion of irrelevant ones are critically important. Prior research using the present methodology
(also conducted within the scope of RITHMS project) has shown that NLP-based entity extraction is a valuable
tool for identifying problematic provenance records and highlighting patterns that may indicate illicit activity
[25]. In a more in-depth analysis of the AAMD dataset, a number of records initially caused challenges due to
vague, inconsistent, or unusually structured provenance entries. These included instances where ownership
histories contained bracketed or ambiguous text or listed generic entities such as ‘‘private collection’’ rather than
verifiable individuals or institutions. One example involved an earthenware figure from Ecuador, whose
provenance linked it to two individuals who have been the focus of other research into trafficking activities.
Manual investigation revealed that both individuals had prior involvement in the trade of looted artefacts from
Latin America, and that the object’s provenance was not only vague but potentially designed to obscure its illicit
origins. After processing the available provenance entries and extracting entities and relationships with the fine-
tuned NLP model, the resulting KG (constructed of the extracted nodes and edges) enabled the reconstruction of a
sprawling social network of over 72,000 entities and more than 110,000 relationships. Centrality analyses (a
statistical method within SNA) conducted on this system revealed central and influential actors within the art
market, including auction houses like Sotheby’s New York as well as individuals and organisations who have
been the target of previous investigations into trafficking networks such as Nicolas Koutoulakis and the Merrin
Gallery. More significantly, the NLP-KG-SNA methodology helped identify lesser-known figures whose prox-
imity to problematic actors warrants further scrutiny. The insights returned from this research demonstrate the
potential for computational approaches not only to organise and better structure provenance data but also to flag
hidden actors and systemic patterns within networks of cultural property exchange. As such, the NLP models and
methods developed in the present study offer a scalable and innovative opportunity for provenance researchers,
cultural heritage professionals, and LEAs engaged in the fight against art crime and trafficking.
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4 Conclusions

Models to perform named entity recognition have been improved over the past years, reaching near-human-level
performance. However, performance is highest when models are trained with a large quantity of labelled data and
can leverage ‘long’ information, which potentially provides informative context and helps the recognition pro-
cess. While large, labelled datasets have been created for projects in other disciplines, it is rare to have such
materials specifically pertaining to cultural heritage, despite the availability of open data in this field. Moreover, in
the case of using data from open datasets available online—as was the case for the RITHMS project - informative
texts are often composed of just a few lines. Therefore, models cannot utilise long information and must rely on
minimal data to capture the complete context from the input texts of the datasets.

In this work, three distinct datasets and models have been specifically designed to create structured data,
addressing this challenge, and facilitating the development of graph databases which leverage similar domain-
specific materials.

Among the datasets, we argue that the most important for the RITHMS project is the AAMD, with provenance
information. The best-performing models have enabled extraction of entities like people and organisations, which
are crucial actors in reconstructing the circulation of artefacts. Moreover, our convention that expands the
definition of EVENT entities to include verbs as well as named activities significantly enhances the value of these
unstructured texts, in which actions such as ‘acquisition’ are more often implied than explicitly stated. This is a
valuable step forward in further defining, reconstructing, and visualising relations among entities.

Future efforts aim to optimise the NER methodology—for example, by removing redundant labels through the
merging of related categories, such as LOC and GPE. Another improvement could involve adding a module prior
to the NER stage that identifies the most informative parts of the text. This pre-processing step can be imple-
mented using either deterministic algorithms or topic modelling techniques. Its goal wold to determine whether
the extracted information reflects the artefacts themselves, rather than what is represented on the artefacts.
Moreover, we would develop optimised relation extraction algorithms for the three diverse types of datasets to
permit complete KG creation, which is the basis for performing social network analysis. This research will
continue to leverage open data and novel technological methods for contributing to the study of the trade of
cultural heritage objects.
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